
Sparse Solutions of Systems of Equations and Sparse
Modeling of Signals and Images

Alfredo Nava-Tudela
ant@umd.edu

John J. Benedetto
Department of Mathematics

jjb@umd.edu

Abstract

We are interested in finding sparse solutions to systems of linear equations Ax = b,
where A is underdetermined and fully-ranked, as presented in [1]. In this report we
examine an implementation of the orthogonal matching pursuit (OMP) algorithm, an
algorithm to find sparse solutions to equations like the one described above, and present
a logic for its validation and corresponding validation results.

We also test OMP in the study of the compression properties of A in the context
of image processing. We make a small modification in the stopping criteria of OMP
that results in better compression ratio vs image quality as measured by the structural
similarity (SSIM) and mean structural similarity (MSSIM) indices.

1 Introduction and context

Let n and m be two positive natural numbers such that n < m, and consider a full rank
matrix A ∈ Rn×m. Given a column vector b ∈ Rn, we know that there is an infinite number
of solutions to the system of linear equations

Ax = b, (1)

where x is a column vector in Rm [5]. That is, there is an infinite number of column vectors
x ∈ Rm that satisfy equation (1). However, of this infinite number of possible solutions,
we are interested in those solutions that are the sparsest. By this we mean solutions where
x has the fewest number of non-zero entries. We shall make this concept more precise in
section 2.

1.1 Why is this problem of interest?

Finding sparse solutions to systems of linear equations has many signal processing applica-
tions, among them, signal compression.

1

For example, the media encoding standard JPEG [2, 8] and its successor, JPEG-2000 [7],
are both based on the notion of transform encoding. The JPEG standard uses the Discrete
Cosine Transform (DCT), and the JPEG-2000 standard uses the Discrete Wavelet Transform
(DWT). Both JPEG standards use properties of the DCT or the DWT, respectively, to
achieve compression by creating approximations that represent the original image in a sparse
way. We shall revisit this application as part of the testing protocol of this project.

2 Defining the problem of finding sparse solutions to

Ax = b

Consider a full-rank matrix A ∈ Rn×m with n < m, and define the underdetermined system
of linear equations Ax = b. From the infinite number of solutions, we shall narrow down
the choice to a well-defined solution by introducing a real valued function J (x) to evaluate
the desirability of a would-be solution x ∈ Rm, with smaller values of J being preferred.
This way, we can define the general optimization problem (PJ) as

(PJ) : min
x
J (x) subject to Ax = b. (2)

Selecting a strictly convex function J (·) guarantees a unique solution. For example if J (x) =
‖x‖22, the squared Euclidean norm of x, the problem (P2) that results from this choice has
the unique minimum-norm solution x̂ given by

x̂ = A+b = AT (AAT)−1b.

We know that the squared `2 norm is a measure of energy; we are interested in measures
of sparsity. As was mentioned before, a vector x is sparse if there are few nonzero elements
in the possible entries in x. As such we shall introduce the `0 “norm”

‖x‖0 = #{i : xi 6= 0}.

Thus, if ‖x‖0 � n, then x is sparse.
Consider the problem (P0) obtained from the general prescription (2) that results from

choosing J (x) = ‖x‖0, viz.,

(P0) : min
x
‖x‖0 subject to Ax = b,

or its approximation (P ε
0),

(P ε
0) : min

x
‖x‖0 subject to ‖Ax− b‖2 < ε. (3)

Unfortunately, the discrete and discontinuous nature of the `0 norm impedes the application
of the standard convex analysis ideas that were at the core of the solution of (P2). Moreover,
it has been proven that finding a solution to (P ε

0) is NP-hard [3], p. 228. However, the
solution of (P ε

0) can still be obtained by greedy algorithms when a sufficiently sparse solution
exists. We introduce one such greedy algorithm next.

2

3 Orthogonal Matching Pursuit

In the first half of this project, we are interested in implementing and validating one of the
many greedy algorithms (GAs) that attempt to solve (P0). The general idea is as follows.
Starting from x0 = 0, a greedy strategy iteratively constructs a k-term approximation xk by
maintaining a set of active columns—initially empty—and, at each stage, expanding that set
by one additional column. The column chosen at each stage maximally reduces the residual
`2 error in approximating b from the current set of active columns. After constructing an
approximation including the new column, the residual error `2 is evaluated; if it now falls
below a specified threshold, the algorithm terminates.

Orthogonal Matching Pursuit (OMP)—a GA for approximating the solution of (P0):

Task: Approximate the solution of (P0) : minx ‖x‖0 subject to Ax = b.

Parameters: We are given the matrix A, the vector b, and the threshold ε0.

Initialization: Initialize k = 0, and set

• The initial solution x0 = 0.

• The initial residual r0 = b−Ax0 = b.

• The initial solution support S0 = Support{x0} = ∅.
Main Iteration: Increment k by 1 and perform the following steps:

• Sweep: Compute the errors ε(j) = minzj
‖zjaj − rk−1‖22 for all j using the

optimal choice z∗j = aTj rk−1/‖aj‖22.
• Update Support: Find a minimizer j0 of ε(j): ∀j /∈ Sk−1, ε(j0) ≤ ε(j), and

update Sk = Sk−1 ∪ {j0}.
• Update Provisional Solution: Compute xk, the minimizer of ‖Ax − b‖22

subject to Support{x} = Sk.
• Update Residual: Compute rk = b−Axk.

• Stopping Rule: If ‖rk‖2 < ε0, stop. Otherwise, apply another iteration.

Output: The proposed solution is xk obtained after k iterations.

This algorithm is known in the literature of signal processing by the name orthogonal
matching pursuit (OMP), and this is the algorithm we have implemented and validated.
OMP solves, in essence, (P ε

0) for ε = ε0, a given positive threshold. See (3) above for details.

4 An OMP implementation

For a given matrix A ∈ Rn×m, if the approximation delivered by OMP has k0 zeros, the
method requires O(k0mn) flops in general; this can be dramatically better than the exhaus-
tive search, which requires O(nmk0k2

0) flops.

3

4.1 Least-squares approximation by QR decomposition

We would like to make the following observations about the OMP algorithm described in
section 3. The step that updates the provisional solution seeks to minimize ‖Ax − b‖22,
subject to Support{x} = Sk. This is equivalent to solving the least squares approximation
problem minx̃ ‖A(k)x̃ − b‖22 for the matrix A(k) that results from using only the k active
columns of A defined by Sk, and x̃ is the vector in Rk whose i-th entry corresponds to the
column of A that was chosen during the i-th iteration of the main loop. See figure 1.

n

1 1 1

a5 a2 a7
A

=

Q

n

3 n-3

Q2

= x

n-3

3

R

0

0

3

R2

R1

(3) (3) (3)

Q1
(3) (3)

(3)

(3)

Figure 1: Suppose that after k = 3 iterations of the main loop, OMP has chosen, in the following
order, columns a5, a2, and a7 from matrix A. We form sub-matrix A(3) = (a5 a2 a7),
and its QR decomposition A(3) = Q(3)R(3), which we use to solve the least-squares
problem ‖A(3)x̃− b‖22 = 0, with x̃ ∈ R3.

For the case when A is a relatively small matrix, we can solve this problem, for example,
by factorizing A(k) = Q(k)R(k) with the QR-algorithm, and then observing that

A(k) = Q(k)R(k) = Q
(k)
1 R

(k)
1 + Q

(k)
2 R

(k)
2 = Q

(k)
1 R

(k)
1 + 0 = Q

(k)
1 R

(k)
1 , (4)

where—using Matlab notation—

Q
(k)
1 = Q(k)(:, 1:k), Q

(k)
2 = Q(k)(:, k+1:n), R

(k)
1 = R(k)(1:k, :), and R

(k)
2 = R(k)(k+1:n, :).

Then, from equation (4), we have

A(k)x̃0 = b⇔ Q
(k)
1 R

(k)
1 x̃0 = b

⇒ Q
(k)T
1 Q

(k)
1 R

(k)
1 x̃0 = Q

(k)T
1 b

⇔ R
(k)
1 x̃0 = Q

(k)T
1 b

⇔ x̃0 = (R
(k)
1)−1Q

(k)T
1 b,

where x̃0 ∈ Rk is the solution to the equivalent minimization problem described above, and
the inverse of R

(k)
1 exists because A(k) is full rank. Finally, when OMP returns successfully

after k0 iterations, we embed x̃0 ∈ Rk0 in 0 ∈ Rm “naturally” to obtain the solution x0 ∈ Rm

4

to the initial least-squares approximation problem ‖Ax − b‖22 subject to the final active
column set Sk0 . The natural embedding refers to setting the j-th entry of 0 ∈ Rm equal to
the i-th entry in x̃0 ∈ Rk0 if during the i-th loop of the main algorithm, OMP chose the j-th
column of A.

4.2 Implementation fine tuning and speedup

We went through a series of code iterations to speedup our original implementation ompQR,
initially done from a simplistic reading of the OMP algorithm described in section 3. We
also had a generic implementation and a couple of dedicated implementations. In table 1
we show the speedup results for the generic version, which can take any full-rank matrix A
as input. The dedicated implementations exploited the structure of known input matrices
used during OMP testing with further speedup gains, as in resorting to the FFT as part of
the internal calculations, for example.

Algorithm Seconds Speedup
ompQR 617.802467 —
ompQRf 360.192118 1.715
ompQRf2 308.379138 1.168
ompQRf3 298.622174 1.032

Table 1: Algorithm performance. The speedup column refers to the speedup from the immediately
previous implementation. To compute the total speedup from first to last implementa-
tions multiply all speedup values together. Total speedup from ompQR to ompQRf3 is 2.068,
which means we doubled the speed of our implementation for the generic matrix version
of our code. We used Matlab version R2010b Service Pack 1 to run “experiment.m”
which performs many OMP calls on randomized input.

The first improvement came from computing ‖rk‖| cos(θj)| during the Sweep portion of
the algorithm. In this case θj is the angle between aj and the residue rk−1. This number
reflects how good an approximation zjaj to the residue is, and it is faster to compute than
ε(j). During this step we also kept track of the best approximation to the residue so that
during the Update Support stage we could more efficiently update Sk compared to what was
done in ompQR. Finally, we do the sweep only on the set of columns that have not been added
to the support set, resulting in further time gains on the Sweep stage whenever k > 1. All
these changes where incorporated into ompQRf.

For the next round of improvements, we stop building Ak at each iteration as explained
in section 4.1. Rather, we initialize Q = In and R = ∅, where In ∈ Rn×n is the identity, and
for consistency we define A0 = In · ∅ = ∅. Subsequently, we update Q and R each time we
add a column vector aj of A in the following way. Suppose that at step k > 0 we have a
QR decomposition of Ak−1 = QR, and that column ajk is chosen from the Update Support
step. Set w = (aT

jk
Q)T and let H be a Householder reflexion such that Hw = v, where

v = (#, . . . ,#, 0, . . . , 0)T has n − k zeros after the first k entries. Then, since HT = H,

5

H2 = In, and HR = R, it is easy to see that

QHT
(
R|HTw

)
= Q

(
HTR|H2w

)
=
(
QR|Qw

)
=
(
Ak−1|QQTajk

)
=
(
Ak−1|ajk

)
= Ak.

Therefore, if we set Q′ = QHT, and R′ =
(
R|HTw

)
, we would have found a QR decom-

position of Ak = Q′R′ as a function of Q, R, and ajk . The implementation of this update
results in faster code compared to the implementation that computes a QR decomposition
of Ak from scratch for each k. This new approach was implemented in ompQRf2.

A final time improvement came simply from allocating all required variables as opposed to
have them grow dynamically as needed. This was implemented in the final version ompQRf3.

5 OMP validation protocol and validation results

In this section we present the validation protocol that we followed to verify the correctness
of our OMP implementation.

5.1 Theoretical results that motivate and justify the protocol

The following results provide the foundation for the validation protocol that we adopted.
This protocol can be used to validate any OMP implementation.

Given a matrix A ∈ Rn×m with n < m, we can compute its mutual coherence defined as
follows.

Definition 1. The mutual coherence of a given matrix A is the largest absolute normalized
inner product between different columns from A. Denoting the k-th column in A by ak, the
mutual coherence is given by

µ(A) = max
1≤k,j≤m, k 6=j

|aTk aj|
‖ak‖2 · ‖aj‖2

. (5)

The mutual coherence gives us a simple criterion by which we can test when a solution
to (1) is the unique sparsest solution available. In what follows, we assume that A ∈ Rn×m,
n < m, and rank(A) = n.

Lemma 1. If x solves Ax = b, and ‖x‖0 < 1
2

(
1 + 1/µ(A)

)
, then x is the sparsest solution.

That is, if y 6= x also solves the equation, then ‖x‖0 < ‖y‖0.

This same criterion can be used to test when OMP will find the sparsest solution.

Lemma 2. For a system of linear equations Ax = b, if a solution x exists obeying ‖x‖0 <
1
2

(
1 + 1/µ(A)

)
, then an OMP run with threshold parameter ε0 = 0 is guaranteed to find x

exactly.

The proofs of these lemmas can be found or are inspired by results in [1]. In light of these
lemmas, we can envision the following roadmap to validate an implementation of OMP. We
have a simple unified theoretical criterion to guarantee both solution uniqueness and OMP
convergence. The following theorem simply unifies the previous lemmas into one statement.

6

Theorem 3. If x is a solution to Ax = b, and ‖x‖0 < 1
2

(
1 + µ(A)

)
, then x is the unique

sparsest solution to Ax = b, and OMP will find it.

In light of this result, we can establish the following protocol to validate any implemen-
tation of OMP.

5.2 Validation protocol

Given a full-rank matrix A ∈ Rn×m, with n < m, compute µ(A), and find the largest integer
k smaller than or equal to 1

2

(
1 + 1/µ(A)

)
. That is, k =

⌊
1
2

(
1 + 1/µ(A)

)⌋
.

Then, build a vector x with exactly k non-zero entries and produce a right hand side
vector b = Ax. This way, you have a known sparsest solution x to which to compare the
output of any OMP implementation.

Pass A, b, and ε0 to OMP to produce a solution vector xOMP = OMP(A,b, ε0).
If OMP terminates after k iterations (or less), and ‖AxOMP −b‖ < ε0, for all possible x

and ε0 > 0, then the OMP implementation would have been validated.

5.3 Validation results

Call κA = 1
2

(
1 + 1/µ(A)

)
, the constant dependent on A that guarantees the results of

Theorem 3 for matrix A. To test our implementation, we ran two experiments involving two
random matrices.

1. A1 ∈ R100×200, with entries in the Gaussian distribution N(0, 1), i.i.d., for which its
mutual coherence turned out to be µ(A1) = 0.3713, corresponding to k = 1 = bκA1c.

2. A2 ∈ R200×400, with entries in the Gaussian distribution N(0, 1), i.i.d., for which its
mutual coherence turned out to be µ(A2) = 0.3064, corresponding to k = 2 = bκA2c.

We first note that, with probability 1, Ai, (i = 1, 2), is a full-rank matrix [1]. Second,
we would like to mention that for full-rank matrices A of size n×m, the mutual coherence
satisfies µ(A) ≥

√
(m− n)/(n · (m− 1)), with the equality being sharp [6]. We used these

results to guide us into obtaining matrix A2 for which k = 2 = bκA2c > 1.
For each matrix Ai, (i = 1, 2), we chose 100 compatible vectors with k non-zero entries

whose positions were chosen at random, and whose entries were in the Gaussian distribution
N(0, 1), i.i.d..

Then, for each such vector x, we built a corresponding right hand side vector b = Aix.
Each of these vectors would then be the unique sparsest solution to Aix = b, and OMP
should be able to find them.

Finally, given ε0 > 0, if our implementation of OMP were correct, it should stop after k
steps (or less), and if xOMP = OMP(Ai,b, ε0), then ‖b−AixOMP‖2 < ε0.

We ran these experiments for twelve values of ε0 equal to 10, 1, 10−1, 10−2, 10−4, 10−6,
10−8, 10−10, 10−12, 10−14, 10−15, and 10−16. For each of these values of ε0 we built 100 vectors
as described above, with their respective right hand side vectors, both of which were fed to
OMP together with the tolerance ε0 being tested.

We kept track of how many iterations it took OMP to stop, and the value of the norm
of the residue ‖b−AixOMP‖2 at the end of each run. We mention that our implementation

7

of OMP had as stopping condition that either the residue would be less than the tolerance
ε0 given, or that n iterations of the main loop would have been executed.

10
!20

10
!15

10
!10

10
!5

10
0

10
5

10
!16

10
!14

10
!12

10
!10

10
!8

10
!6

10
!4

10
!2

10
0

10
2

!
0

||
b
!

A
x o

m
p
||

2

Average residue norm vs tolerance

10−20 10−15 10−10 10−5 100 10510−1

100

101

102

ε0

of

 it
er

at
io

ns

Average # of iterations vs tolerance

Figure 2: OMP behavior for a matrix A with µ(A) = 0.3713, which corresponds to k0 = 1.

Figure 2 shows the summary of the results for matrix A1. It contains two graphs, the top
graph represents the average of the norm of the residue over the 100 experiments executed
for a given tolerance, versus the 12 tolerances chosen. The red line represents the identity
in this case. The second graph is the same but for the average number of iterations it took
OMP to stop vs the tolerances chosen. The red line in this case is the expected number of
iterations k = bκA1c at stop time. Figure 3 is the same as figure 2, but for matrix A2.

10−20 10−15 10−10 10−5 100 10510−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

ε0

||b
−A

x om
p|| 2

Average residue norm vs tolerance

10−20 10−15 10−10 10−5 100 10510−1

100

101

102

103

ε0

of

 it
er

at
io

ns

Average # of iterations vs tolerance

Figure 3: OMP behavior for a matrix A with µ(A) = 0.3064, which corresponds to k0 = 2.

One can observe in both cases that there are three modal behaviors of OMP. The right-
most points in each graph correspond to tolerances ε0 that are “too large”. For them, OMP
converges, but it does not have to do much work necessarily, since the default initial solution
x = 0 is already close to the right hand side b. The typical behavior corresponds to points

8

in the middle of the graph, they represent the cases when OMP converges in exactly k iter-
ations to the sparsest solution within machine precision. And, finally, the leftmost points,
they represent when OMP fails to converge because the tolerances ε0 are too close to ma-
chine precision, basically trampling OMP efforts to converge due to roundoff and truncation
errors.

0 20 40 60 80 100
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

Experiment ID

||b
−A

x om
p|| 2

ε0 = 10

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Experiment ID

of

 it
er

at
io

ns

ε0 = 10

0 20 40 60 80 100
10−18

10−16

10−14

10−12

10−10

10−8

10−6

Experiment ID

||b
−A

x om
p|| 2

ε0 = 1e−06

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Experiment ID

of

 te
ra

tio
ns

ε0 = 1e−06

0 20 40 60 80 100
10−18

10−17

10−16

10−15

10−14

10−13

10−12

10−11

Experiment ID

||b
−A

x om
p|| 2

ε0 = 1e−16

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Experiment ID

of

 it
er

at
io

ns

ε0 = 1e−16

Figure 4: The three modal behaviors, dependent on ε0, observed for the matrix A used in Fig. 2.

In figure 4 we exemplified each of the three modal behaviors with three values of ε0 typical
of each mode. The figure contains three graphs, the top graph is for ε0 = 10, the middle
graph is for ε0 = 10−6, and the bottom graph is for ε0 = 10−16. Each of the graphs shows
the individual results for each of the 100 experiments ran for each tolerance ε0. This figure
corresponds to matrix A1. In figure 5 we have the same graphs but for matrix A2.

We can conclude then that the validation protocol and results confirm that our implemen-
tation of OMP is correct. This implementation will return a solution x = OMP(A,b, ε0)
to Ax = b, within machine precision, whenever the tolerance ε0 ≥ 10−14, and provided
‖x‖0 ≤ κA.

9

0 20 40 60 80 100
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

Experiment ID

||b
−A

x om
p|| 2

ε0 = 10

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Experiment ID

of

 it
er

at
io

ns
ε0 = 10

0 20 40 60 80 100
10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

Experiment ID

||b
−A

x om
p|| 2

ε0 = 1e−06

0 20 40 60 80 100
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Experiment ID

of

 te
ra

tio
ns

ε0 = 1e−06

0 20 40 60 80 100
10−16

10−15

10−14

10−13

10−12

10−11

Experiment ID

||b
−A

x om
p|| 2

ε0 = 1e−16

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

200

Experiment ID

of

 it
er

at
io

ns

ε0 = 1e−16

Figure 5: The three modal behaviors, dependent on ε0, observed for the matrix A used in Fig. 3.

10

6 OMP testing protocol and results

For the first part of our testing protocol, we set to reproduce a portion of an experiment
described in [1]. The second part deals with studying the image compression properties of a
particular matrix A described in more detail below.

6.1 Reproducing previous results

In a SIAM Review article by A. M. Bruckstein, D. L. Donoho, and M. Elad [1], the following
experiment is presented. We set to reproduce the portion corresponding to OMP.

Consider a random matrix A of size 100× 200, with entries independently drawn at ran-
dom from a Gaussian distribution of zero mean and unit variance, N (0, 1). It can be proven
that, with probability 1, every solution for the system Ax = b with less than 51 entries is
necessarily the sparsest one possible, and, as such, it is the solution of (P0). By randomly
generating such sufficiently sparse vectors x (choosing the nonzero locations uniformly over
the support in random and their values from N (0, 1)), we generate vectors b. This way, we
know the sparsest solution to Ax = b, and we shall be able to compare this to the results
given by OMP.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cardinality of the solution

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss

A is 100x200

ompQRf3
SolveOMP

Figure 6: Reproduction of results in section 3.3.1 of [1] for OMP. Our implementation ompQRf3
is slightly better at recovering with higher probability the sparsest solution to Ax = b
when compared to SolveOMP, an implementation publicly available at [4].

Since we set to reproduce the results that pertain to OMP in Figure 2 of page 56 of [1], we
considered cardinalities in the range of 1 to 70—even though we knew that, with probability
1, only those solutions with cardinality equal to or less than 51 were uniquely the sparsest
ones possible—, and we conducted 100 repetitions and averaged the results to obtain the

11

probability of the algorithm finding the solution with which we had generated the right hand
side b. Comparing our results with results obtained by published OMP implementations,
e.g., like the ones available at SparseLab [4], figure 6 shows that our implementation of OMP
reproduces the published experiment, and it performs slightly better than the software found
in [4].

6.2 Image compression

In the second part of our test suite, we explore image compression via sparsity. The basic
idea is that if Ax = b, b is dense, and x is sparse, we can achieve compression by storing
wisely x instead of b.

In specific, suppose we have a signal y ∈ Rn that usually requires a description by n
numbers. However, suppose that we can solve equation (3), which we reproduce below,

(P ε
0) : min

x
‖x‖0 subject to ‖Ax− y‖2 < ε,

and the solution xε0 has k non-zeros, with k � n, then we would have obtained an ap-
proximation ŷ = Axε0 to y using k scalars, with an approximation error of at most ε. By
increasing ε we obtain stronger compression with larger approximation error, and in this way
we can obtain a compression ratio vs tolerance curve for this compression mechanism.

In our case, we consider the matrix A = [DCT Haar] that results from concatenating
two basis. On the one hand we have the Discrete Cosine Transform (DCT) waveforms basis,
and on the other hand the basis generated by the identity plus the Haar wavelet waveforms
(Haar). In figure 7 we can see the first six representatives of each basis for R64, respectively.

Figure 7: The first six waveforms of the DCT (left) and Haar (right) bases.

6.2.1 Image database

We select 5 natural images to test our compression algorithms. They are shown in figure
8. All images are 512 by 512, 8-bit grayscale images, which means they are composed of
5122 = 262,144 pixels that can take integer values from 0 (black) to 255 (white).

12

(a) Barbara (b) Boat

(c) Elaine (d) Lena

(e) Peppers

Figure 8: Images used for our compression algorithms based on sparse image representation.

13

6.2.2 Methodology

Following the approach to image processing at the core of the JPEG image compression
standard [8], we subdivide each image in our database in 8 by 8 non-overlapping squares
that will be treated individually. A sub-image Y ∈ R8×8 of size 8 by 8 pixels can be linearized
into a vector y ∈ R64. There are many ways to do this, we tested two possible solutions.
The first one consisted of concatenating one after the other the columns of Y, we shall call
this method c1, which can be thought of as a bijection c1 : R8×8 → R64 that maps Y 7→ y
the way it was described above.

Yet another method would be to flip the ordering of the entries of every even column
of Y and then concatenate its columns. That is, from Y first obtain the matrix Y′, where
Y ′i,2j = Y8+1−i,2j, and Y ′·,· and Y·,· are the entries of Y′ and Y, respectively. Then concatenate
one after the other the columns of Y′. Call this method c2, also a bijection c2 : R8×8 → R64

that maps Y 7→ y′ the way just described.
After a series of tests, we chose c2 over c1 as it produces better results. This could

be because on average, for a natural image, |Y8,j − Y8,j+1| < |Y8,j − Y1,j+1| which makes
y′ = c2(Y) change more slowly than y = c1(Y). This translates into needing less Fourier
coefficients of the DCT to describe, within a certain error ε, the signal y′ compared to those
needed for the signal y.

We proceed in the following way. Given a tolerance ε0 > 0, and an image I that has been
partitioned in 8 by 8 non-overlapping sub-images, say {Yl} where l = 1, . . . , (512/8)2 for the
images in our database, we obtain the approximation to yl = c2(Yl) derived from the OMP
algorithm, i.e., from the sparse xl = OMP([Dct Haar],yl, ε0), compute ỹl = [DCT Haar]xl.

We know that ‖ỹl − yl‖2 < ε0, and we can count how many non-zero entries there are in
xl, say nnzxl

. With this, we can define the compression ratio.

Definition 2 (Compression Ratio). Given the context above, the compression ratio for image
I—given compression matrix A = [DCT Haar], and tolerance ε0—is the number

cr(I,A, ε0) =

∑
l nnzxl

S
,

where S is the total number of pixels in image I (S = 5122 in our case).

With this definition in hand, we can now proceed to plot compression ratio vs tolerance
graphs—one of the main goals of the project—, which will allow us to gauge the compression
properties of various compression matrices.

6.2.3 Compression ratio vs tolerance graphs

Since we are interested in finding out the compression properties of A = [DCT Haar], and
compare them to those of B and C which use only the DCT or the Haar basis, respectively, we
plot for all images in our database their respective compression ratio vs tolerance graphs. We
took ε0 ∈ T = {2048, 1024, 512, 256, 128, 112, 96, 80, 64, 56, 48, 40, 32, 24, 16, 8, 7, 6, 5, 4, 3, 2, 1}
and for each image I in our image database we obtained the corresponding compression ratios
cr(I,A, ε0), cr(I,B, ε0), and cr(I,C, ε0) to obtain the following graphs.

14

(a) Barbara (b) Boat

(c) Elaine (d) Lena

(e) Peppers

Figure 9: Compression ratio vs tolerance. We can observe that for all images the best compression
ratio for a given tolerance is obtained for matrix A = [DCT Haar] which combines both
bases. Also, B = [DCT] outperforms C = [Haar].

15

From the results shown in figure 9, we can see that combining both the DCT and Haar
bases results in better compression than if either basis is used alone. This is very encouraging.
However, what can be said of the quality of the reconstructed images? For what range of
the tolerances tested is the image quality acceptable? What does an “acceptable” image
quality mean? To answer these and related questions, we need to address the issues of image
reconstruction and error estimation.

6.2.4 Image reconstruction and error estimation

Given a 512×512 image I in our database, we can proceed to compress it using the method-
ology described in section 6.2.2. If I is broken down in 8 × 8 non-overlapping sub-images
{Yl}l=1,...,4096, we can obtain for each of them a corresponding reconstructed sub-image

Ỹl = c2−1(ỹl), and from those reconstruct an approximation Ĩ to I. Here, ỹl = Axl,
xl = OMP(A,yl, ε0), and yl = c2(Yl), as before. The compression would come from storing

wisely {xl}. We can summarize this procedure with the following notation: Ĩ = rec(I,A, ε0).
How do we assess the quality of Ĩ when compared to the original image I? We introduce

two error estimators—three in actuality, but two of them are related.
Traditionally, the signal processing community has relied on the peak signal-to-noise ratio,

or PSNR [11].

Definition 3 (PSNR). The Peak Signal-to-Noise Ratio between two images Ĩ and I is the
quantity, measured in dB,

PSNR(Ĩ, I) = 20 log10

 maxI√
mse(Ĩ, I)

 ,

where maxI is the maximum possible value for any given pixel in I, maxI = 255 in this case;

and mse(Ĩ, I) = 1
nm

∑
i,j

(
Ĩ(i, j) − I(i, j)

)2
is the mean square error between both images.

Here n and m represent the dimensions of I, n = m = 512 in our case, and I(i, j) represents

the value of the pixel at coordinates (i, j) in image I. Similarly for Ĩ(i, j).

PSNR has the advantage that it is easy to compute and has widespread use, but it has
been criticized for poorly correlating with perceived image quality [9, 10], but in recent years
extensive work on other error estimators that take into account the human visual system
have arisen. In particular, we present and define the structural similarity and mean structural
similarity indices [9].

Definition 4 (SSIM). Let Ĩ and I be two images that have been decomposed in L×L non-

overlapping sub-images {Ỹl} and {Yl}, respectively. Then the Structural Similarity index

for two corresponding sub-image linearizations, say ỹl = c2(Ỹl) and yl = c2(Yl), is defined
as follows

SSIM(ỹl,yl) =
(2µỹl

µyl
+ C1)(2σỹlyl

+ C2)

(µ2
ỹl

+ µ2
yl

+ C1)(σ2
ỹl

+ σ2
yl

+ C2)
,

where µyl
and σyl

represent the mean and standard deviation of yl, respectively; and similarly
for ỹl. The term σỹlyl

is the correlation between ỹl and yl. The values C1 and C2 are two
small constants.

16

For our purposes, we used the default values of L = 11, C1 = 0.01, and C2 = 0.03 used
in [9] when assessing the SSIM of an image in our database and its reconstruction. We used
a value of L = 4 when we modified OMP to use internally the SSIM as a stopping criteria.
More on this later.

From the above definition, we can see that the SSIM index is a localized quality measure
that can be represented on an plane that maps its values. It can takes values from 0 to 1
and when it takes the value of 1 the two images are identical. In practice, we usually require
a single overall quality of measure for the entire image. In that case we use the mean SSIM
index to evaluate the overall image quality.

Definition 5 (MSSIM). Let Ĩ and I be two images, where the former is the approximation
and the later is the original. Then the Mean Structural Similarity index is

MSSIM(Ĩ, I) =
1

M

M∑
l=1

SSIM(ỹl,yl),

where ỹl and yl are the image contents at the l-th local sub-image; and M is the number of
local sub-images in the image.

Finally, we take a look at the relationship between the size of the sub-image and the
tolerance, and how this affects the quality of the approximation. We analyze the idealized
error distribution in which all pixels of the approximation are c units apart from the original.
Consider an L×L sub-image that has been linearized to a vector y of length L2. Assume that
the OMP approximation within ε has distributed the error evenly, that is, if x = OMP(A,y, ε)
and ỹ = Ax, then

‖Ax− y‖2 < ε⇔ ‖ỹ − y‖22 < ε2,

⇔
L2∑
j=1

(
ỹ(j)− y(j)

)2
< ε2,

⇔ L2c2 < ε2,

⇔ c <
ε

L
. (6)

That is, if we want to be within c units from each pixel, we have to choose a tolerance ε such
that c = ε/L.

We note that the least-squares approximation at the core of OMP approximates the
idealized error distribution. This can be seen in figure 10 where the black dashed line
represents this idealized error approximation. For tolerances ε > 40, we can see that the
PSNR for all images considered are above this idealized error distribution. This can be
explained by noting that, for example, for ε = 2048, we would have from equation (6)
that c = 2048/8 = 256, but the maximum pixel value is only 255. Therefore, unless the
original image I is just a white patch, the initial value of the OMP approximation being
an all black image, there are matching pixels in the original and the approximation image
Ĩ = rec(I,A, 2048) that are less than 256 units apart. This would necessarily, by definition

3, imply PSNR(Ĩ, I) > 0, a value above the value of the PSNR for the idealized error
distribution when ε = 2048, which is a small negative value.

17

Figure 10: Peak Signal-to-Noise Ratio vs tolerance. We observe three typical behaviors for all
images. For large values of the tolerance, about ε > 40, the PSNR of all images is
above the PSNR value for the idealized error distribution marked by the black dashed
line. This behavior is also observed for very small values of the tolerance, about
ε < 3. Then for values between these two extreme behaviors, all images conform very
closely to the idealized error distribution, fact that is expected from the least-squares
approximation at the core of the OMP algorithm.

On the other hand, for really small tolerances, about ε < 3, we observe that the PSNR
value for all images jumps again above the PSNR for the idealized error model. This is
a happy case when roundoff error actually helps. What happens is that for such small
tolerances, the roundoff to the closest integer for all entries in ỹl = Axl when we form
the sub-image approximation Ỹl = c2−1(ỹl), coincides with the true value of the pixels in

the original sub-image Yl. Again, by definition 3, this increases the value of PSNR(Ĩ, I)
compared to the case where roundoff would not have taken place.

6.2.5 PSNR and MSSIM comparison

Now that we have some tools to asses the quality of a reconstruction, how do they compare?
In figure 11 we have plotted the compression ratio versus both error indices MSSIM

and PSNR. The first thing that we observe is that the sensitivity for PSNR varies more
dramatically than the sensitivity for MSSIM over the range of tolerances chosen.

From figure 12 we can observe that for the range of 20 to 40 dB in PSNR, the MSSIM
index ranges from about 0.4 to 0.97. Since a value of 1 in MSSIM corresponds to two
identical images, we can focus on values of PSNR no greater than 40 dB in our analysis.
Also in figure 12 we corroborate the criticism that has been addressed to PSNR as a measure

18

Figure 11: Compression ratio vs MSSIM, PSNR

Figure 12: Peak Signal-to-Noise Ratio vs Mean Structural Similarity

19

of image quality. For example, for image Barbara at 20 dB we have an MSSIM value of 0.4,
whereas for image Lena we have an MSSIM value of 0.55. A similar wide range between 0.69
(Elaine) and 0.84 (Barbara) for MSSIM is observed for 30 dB in PSNR. It is not until 40
dB that we have a much smaller range of MSSIM values, 0.95 (Peppers) to 0.97 (Barbara).
Therefore, if SSIM/MSSIM capture more accurately the human visual system perception of
image quality, then the PSNR index is shown to be not so good at it until after values larger
than or equal to 40 dB.

We therefore drop from the rest of our analysis the PSNR index, other than for an
occasional reference point, and focus on the SSIM and MSSIM indices. We retake the
questions at the end of section 6.2.3 and answer them with figure 13. From it, if we were
to consider desirable values of MSSIM to be above or equal to 0.9, we would see that this
would correspond to a tolerance of less than 32 for the Peppers and of 48 for Barbara, all
other tolerances for the rest of the images falling in between these two values.

Figure 13: Compression ratio and its corresponding MSSIM vs tolerance. In this graph we have
plotted together the best compression ratio obtained by combining the DCT and Haar
bases, and the corresponding value of the MSSIM index for a given tolerance. The
compression ratio graphs are on the bottom left, and the MSSIM index values are
above these. This is done for all images.

This means that if we wanted all images to have an MSSIM index of 0.9 or better, we
would have to pick a tolerance no larger than ε = 32. This tolerance corresponds, according
to equation (6), to an average value of at most 32/8 = 4 units away per pixel. Under these
circumstances we would achieve a compression ratio of 0.1 to 0.18, that is, 10:1 to 5.5:1
compression. But how good would images with MSSIM greater than or equal to 0.9 actually
look? Moreover, what if we could modify OMP as to guarantee a certain MSSIM quality

20

level? It turns out that this modification is possible.
Consider the following change in the termination condition for the OMP algorithm from

‖Ax − b‖2 < ε0 to ‖Ax − b‖SSIM ≡ SSIM(c−1
2 (Ax), c−1

2 (b)) > δ0, where δ0 is a desired
minimum MSSIM index value to achieve in each individual sub-image of the reconstruction
of I. When we make this change, and recompute the compression ratio vs MSSIM graphs,
we obtain figure 14. In this figure, we observe that changing the termination condition for
OMP leads to an improvement in the compression ratio without sacrificing image quality.
Or, view from the opposite perspective, given a compression ratio, we can achieve a better
image quality index MSSIM with the new stopping criteria. As we shall see in the pictures
below, this change redistributes the work that OMP performs more evenly across the image.

Finally, to address the question of how good images actually look, we let the reader be the
judge. See figures 15 through 20. All figures consist of two images, the reconstruction from
the original, to the left; and the SSIM index map to the right. The SSIM map represents
the localized quality of the image reconstruction. Lighter values are values closer to 1 (white
= 1), whereas darker values are values closer to 0 (black = 0). Figures 15 through 18 show
the Boat with different tolerances and stopping criteria. Figures 19 and 20 show Barbara.

7 Conclusions, future work, and acknowledgements

We achieved all goals of the project, and had extra time to explore other aspects that were
not in the initial project proposal.

Our implementations of the orthogonal matching pursuit algorithm were validated against
our validation protocol and a published public implementation found in [4]. Through a
series of modifications to our initial algorithm implementation we were able to improve its
performance two fold for the general matrix version.

During the testing phase of the project we reproduced successfully published results in
[1], and our implementation was slightly more robust in finding sparse solutions than the
implementation benchmark used above.

Also, we studied the compression properties of A = [DCT Haar] as part of our test suite.
We established that this matrix has better compression properties in the context of image
processing than if the DCT or Haar bases are used by themselves. We used the PSNR,
SSIM, and MSSIM indices to assess the quality of image reconstructions. This gave us the
clue to modify the stopping criteria of OMP and obtain that way better compression ratios
for equivalent perceived image quality reconstructions.

There are, however, some aspects to this work that would require more study. In the
future we would like to address the very important issue of how to actually store the sparse
representations obtained by solving problem (P ε

0) expressed in equation (3). Also, it would
be of relevance to study the properties of A = [DCT Haar], and other possible matrices A,
from the perspective of frame theory. In that sense, can we do better than Haar? What is
the role of the uncertainty principle in all of this?

I would like to thank Radu V. Balan and Manuel Tiglio for their support and constructive
feedback in the preparation and execution of this AMSC 663/664 class project. I would like
to particularly thank John J. Benedetto, my advisor, for his unwavering support and valuable
insights. Thank you John!

21

(a) Barbara (b) Boat

(c) Elaine (d) Lena

(e) Peppers

Figure 14: Compression ratio vs MSSIM. Comparison of different termination criteria for OMP.

22

(a) Boat (b) MSSIM

Figure 15: Boat: ε0 = 200, PSNR = 25.2711, MSSIM = 0.6006, compression = 46.08 : 1, termi-
nation criteria: ‖ · ‖2

23

(a) Boat (b) MSSIM

Figure 16: Boat: ε0 = 64, PSNR = 31.7332, MSSIM = 0.8222, compression = 14.08 : 1, termina-
tion criteria: ‖ · ‖2

24

(a) Boat (b) MSSIM

Figure 17: Boat: ε0 = 32, PSNR = 36.6020, MSSIM = 0.9214, compression = 6.22 : 1, termination
criteria: ‖ · ‖2

25

(a) Boat (b) MSSIM

Figure 18: Boat: δ0 = 0.92, PSNR = 34.1405, MSSIM = 0.9355, compression = 6.27 : 1, termi-
nation criteria: ‖ · ‖SSIM

26

(a) Barbara (b) MSSIM

Figure 19: Barbara: ε0 = 32, PSNR = 36.9952, MSSIM = 0.9447, compression = 5.36 : 1,
termination criteria: ‖ · ‖2

27

(a) Barbara (b) MSSIM

Figure 20: Barbara: δ0 = 0.94, PSNR = 32.1482, MSSIM = 0.9466, compression = 6.49 : 1,
termination criteria: ‖ · ‖SSIM

28

References

[1] A. M. Bruckstein, D. L. Donoho, and M. Elad, From sparse solutions of systems
of equations to sparse modeling of signals and images, SIAM Review, 51 (2009), pp. 34–
81.

[2] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1998.

[3] B. K. Natarajan, Sparse approximate solutions to linear systems, SIAM Journal on
Computing, 24 (1995), pp. 227–234.

[4] SparseLab. http://sparselab.stanford.edu/.

[5] G. W. Stewart, Introduction to Matrix Computations, Academic Press, 1973.

[6] T. Strohmer and R. W. Heath, Grassmanian frames with applications to coding
and communication, Appl. Comput. Harmon. Anal., 14 (2003), pp. 257–275.

[7] D. S. Taubman and M. W. Mercellin, JPEG 2000: Image Compression Funda-
mentals, Standards and Practice, Kluwer Academic Publishers, 2001.

[8] G. K. Wallace, The JPEG still picture compression standard, Communications of
the ACM, 34 (1991), pp. 30–44.

[9] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality
assessment: From error measurement to structural similarity, IEEE Transactions on
Image Processing, 13 (2004), pp. 1–14.

[10] A. B. Watson, ed., Digital Images and Human Vision, The MIT Press, 1993.

[11] Wikipedia. http://en.wikipedia.org/wiki/Peak signal-to-noise ratio.

29

